

Providing you with UV solutions for your disinfection needs

FLASHBOX-mini

Description

The upgraded FLASHBOX-mini UV Disinfection Chamber is a small, easily transportable chamber designed for use in any healthcare, pharmaceutical, manufacturing, laboratory, or research setting. It provides a rapid and highly effective method to disinfect tablet computers, phones, remote controls, miscellaneous electronics, instruments, and components to reduce the transfer of dangerous organisms. It also offers a way to disinfect components without removing them from the room, minimizing the chance for cross-contamination.

The FLASHBOX-mini contains 1 shelf to support the item(s) being disinfected. It simply plugs into any wall outlet. The disinfection chamber produces an efficient UVC output intensity of approximately 2000 μ w/cm² achieving a 99.99% kill of spores like *C. diff* and a greater than 99.99% kill of bacteria such as MRSA and Hepatitis in 30 seconds.

Usable Interior Space: 12" W x 5" H x 6" D
Overall Dimensions: 14" W x 9" H x 8" D
Power: 115 VAC, 60 Hz, 0.5 Amps
Bulb Lifespan: 11,000 hours
UV-C Output: Intensity of 2000 μw/cm²
Dosage of 60 mJ/cm² per 30 second exposure

Features

Efficacy:

- The FLASHBOX-mini contains 2 protected UV-C bulbs, one on the top and one on the bottom, to provide increased disinfection coverage of items placed inside the chamber.
- At the furthest point from the bulbs, the FLASHBOX-mini provides over 2000 μ W/cm² of UV-C intensity. This intensity correlates to a 60 mJ/cm² UV-C dosage during a 30-second exposure.
- The FLASHBOX-mini's UV-C output was validated using two independent UV-C Sensors, the Solar Light Company's PMA1122 Germicidal UVC Sensor and the General® UV512C Digital UVCMeter.

Operation:

- Easily operated with minimal training.
- No chemicals to store and handle.
- Preset timer will light up at the push of the start button
- The FLASHBOX-mini has a semi-transparent door for visual confirmation that the unit is working properly.

Safety:

- The door contains a safety switch which turns the unit off if the door is opened during an exposure.
- The glass door blocks UV-C wavelengths from passing through, such that it is safe to look through the glass while the unit is running.

Disinfection	Achieved in	30-Second	Exposure Time
DISHITECTION	ACILICACA III	JU-JECUIIU	LADUSUIC IIIII

	Level of Disinfection per Exposure	Reference		
Spore				
Bacillus anthracis spores - Anthrax spores	90%	Light Sources Inc. 2014		
Bacillus subtilis ATCC6633	99%	Mamane-Gravetz and Linden 2004		
Clostridioides difficile spores	99.99%	Antimicrobial Test Laboratories 2015		
Bacterium				
Bacillus anthracis - Anthrax	99.99%	Light Sources Inc. 2014		
Campylobacter jejuni ATCC 43429	99.99%	Wilson et al. 1992		
Clostridium tetani	99.99%	Light Sources Inc. 2014		
Corynebacterium diphtheriae	99.99%	Light Sources Inc. 2014		
Escherichia coli	99.99%	Light Sources Inc. 2014		
Escherichia coli O157:H7	99.99%	Tosa and Hirata 1999		
Klebsiella pneumoniae	99.99%	Giese and Darby 2000		
Legionella pneumophila	99.99%	Oguma et al. 2004		
Mycobacterium tuberculosis	99.99%	Light Sources Inc. 2014		
Pseudomonas aeruginosa	99.99%	Light Sources Inc. 2014		
Salmonella enteritidis	99.99%	Tosa and Hirata 1998		
Salmonella typhosa - Typhoid fever	99.99%	Light Sources Inc. 2014		
Shigella dyseteriae - Dysentery	99.99%	Light Sources Inc. 2014		
Staphylococcus aureus ATCC25923	99.99%	Chang et al. 1985		
Vibrio comma - Cholera	99.99%	Light Sources Inc. 2014		
Molds				
Aspergillius flavus	99%	Light Sources Inc. 2014		
Mucor racemosus A & B	99%	Light Sources Inc. 2014		
Viruses				
Adenovirus type 2	90%	Shin et al. 2005		
Bacteriopfage - E. Coli	99.99%	Light Sources Inc. 2014		
Calicivirus canine	99.99%	Husman et al. 2004		
Calicivirus feline	99.99%	Husman et al. 2004		
Coxsackievirus B5	99.99%	Gerba et al. 2002		
Hepatitis A	99.99%	Wiedenmann et al. 1993		
Hepatitis A HM175	99.99%	Wilson et al. 1992		
Influenza	99.99%	Light Sources Inc. 2014		
Norovirus	99.99%	Lee et al. 2008		
Poliovirus 1	99.99%	Gerba et al. 2002		
Staphylococcus aureus phage A 994	99.99%	Sommer et al. 1989		
Protozoan				
Cryptosporidium	99.99%	Morita et al. 2002		
Giardia lamblia	99.99%	Mofidi et al. 2002		