A Focus on Chlorine Dioxide: The Promising Food Preservative

Zhao Chen*

Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA

*Corresponding author: Zhao Chen, Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA, Tel: 864-650-5244; E-mail: zchen5@clemson.edu

Received date: February 20, 2017; Accepted date: February 21, 2017; Published date: February 27, 2017

Editorial

Chlorine dioxide (ClO₂) is an unstable green-yellowish gas with an irritating odor [1]. In water, ClO₂ exists as free radicals and as a powerful oxidizing agent, it reacts easily with reducing agents. The end products of ClO₂ reactions are chloride (Cl⁻), chlorite (ClO⁻), and chlorate (ClO₃⁻) [2]. Chlorine dioxide is a promising food preservative as a substitute for chlorine (Cl₂) because unlike Cl₂, it does not react with organic materials in foods to form harmful organohalogen byproducts [3]. Chlorine dioxide can be used in aqueous and gaseous phases. Studies have demonstrated that both aqueous and gaseous ClO₂ are effective sanitizing agents which can inactivate a broad spectrum of microorganisms, such as bacteria, fungi, viruses, protozoa, and algae [4].

The US Environmental Protection Agency (EPA) has approved the use of ClO₂ as a disinfectant for potable water with a monitoring requirement of 1 ppm ClO⁻ in the treated water [5]. The US Food and Drug Administration (FDA) has also allowed the use of ClO₂ as a bactericidal agent in poultry processing water at a level of 3 ppm residual ClO₂ [6]. Meanwhile, aqueous ClO₂ has been approved by the US FDA for sanitizing fruits and vegetables at concentrations not exceeding 3 ppm residual ClO₂ [7].

Studies have proved the effectiveness of ClO₂ treatment on prolonging the shelf-life and maintaining the storage quality of a wide variety of foods. Chlorine dioxide has been reported to inhibit the activities of some browning-related enzymes to retain the stability of fruits and vegetables. It has been found to be able to inhibit polyphenol oxidase (PPO) activity in Golden Delicious apple [8], lotus root [9], and asparagus lettuce [10]. Peroxidase (POD) activity in asparagus and lettuce [10] did not produce detectable levels (<5 mg/L) of trihalomethanes. Similarly, since ClO₂ is a strong oxidant, some reducing components as human nutrients (e.g. ascorbic acid) in foods could be classified as a carcinogen to humans by the International Agency for Research on Cancer [31]. No formation of toxic chlorinated byproducts is one significant advantage of ClO₂ as food preservative over Cl₂. It has been reported by López-Gálvez et al. [32] that washing lettuce with 3.7 mg/L aqueous ClO₂ for 30 min did not produce detectable levels (<5 mg/L) of trihalomethanes (THMs), whereas the formation of THMs could be detected in process water and lettuce in which sodium hypochlorite (NaClO) was applied under some conditions.

In conclusion, as a strong oxidizing agent, ClO₂ has the potential to be an alternative to Cl₂ to maintain the postharvest storage quality and enhance the microbiological safety of foods, without posing any health risks to consumers.

References


